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ABSTRACT: Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud.
(rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their
degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier
structure−activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our
findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other
two usual molecular descriptors. On the other hand, a quantitative structure−activity relationship (QSAR) analysis based on
molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very
accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR
models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum
Gaud.
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■ INTRODUCTION

Despite the use of oats for thousands as a food source for
humans and livestock,1 the wild oat Avena fatua L. is a major
weed in oat farming; likewise, Lolium rigidum Gaud. (rigid
ryegrass) affects cereal crops worldwide. The weed control is
commonly performed using herbicides, but different cases of
resistance have appeared.2−7 Accordingly, development of new
herbicides is required. Benzoxazinones containing the hydroxa-
mic moiety have gained widespread use in phytochemistry as
well as their degradation products;8 therefore, development of
new derivatives of this family of natural allelochemicals present
in corn, wheat, and rye is of interest, which can be achieved
using quantitative structure−activity relationship (QSAR)
techniques.
The physicochemical and biological properties of herbicides

can be related with their hydrophobicity, e.g., the soil sorption
of a variety of herbicide families has shown to be linearly
correlated with the octanol/water partition coefficient (log P).9

In addition, other molecular descriptors, such as molecular
weight and volume, determine transport characteristics of
molecules.10 However, properties like these do not always
correlate significantly with biological properties, e.g., in the
QSAR modeling of antifungal activities of some benzothiazole
derivatives.11 Thus, more representative descriptors are usually
invoked to generate predictive QSAR models.
Three-dimensional descriptors are frequently calculated to

provide useful QSARs,12−14 despite the need for exhaustive
data manipulation, such as conformational screening, geometry
optimization, and three-dimensional alignment of molecules.
Otherwise, a method based on two-dimensional (2D)

molecular representations (chemical structure images), namely,
MIA−QSAR (multivariate image analysis applied to quantita-
tive structure−activity relationship),15 can provide predictive
QSAR models. Recently, this method was improved to
augmented (aug)-MIA−QSAR,16 in which new dimensions
were introduced to account for atomic size and other
properties. In this way, physical, chemical, and biological
properties of molecules can be appropriately explained by more
complex information than hydrophobicity, such as 2D
molecular shape, atomic sizes, and colors to encode other
atomic properties.
Accordingly, aug-MIA descriptors were used in this study to

generate quantitative relationships between the chemical
structures of a series of benzoxazinones, their degradation
products, and analogues with the respective phytotoxicities
toward A. fatua L. and L. rigidum Gaud., expressed in terms of
percent of root length compared to the control. These
biological data were obtained in the literature,8 where a
reasonable correlation between the phytotoxicities of five
aminophenoxazines and log P was found, but it cannot be
extended to the whole series of compounds analyzed.

■ MATERIALS AND METHODS
A series of 21 benzoxazinones, their degradation products, and
analogues, together with the corresponding approximate phytotoxicity
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data toward A. fatua L. and L. rigidum Gaud. [expressed in terms of
percent of root length relative to the control, exposed to 10−3 M of
herbicide in dimethyl sulfoxide (DMSO)/buffer solution] were
obtained from the literature8 and are given in Table 1. The values
of log P, molecular weight, and molecular volume were calculated
using the Molinspiration program (www.molinspiration.com).

The aug-MIA−QSAR model was built according to the procedure
described elsewhere;16 thus, only a brief description is given here. A
basic framework (a chemical structure) was drawn in the GaussView
5.0 program;17 the molecules were generated by consecutive
replacement of substituents, whose atom sizes were proportional to
the corresponding van der Waals radii. Images were saved individually
as bitmaps in a well-defined workspace (of 335 × 218 pixel size) in the
Paint application of Microsoft Windows. Two-dimensional alignment
was performed by making the common scaffold of the whole series
congruent; the superposed chemical structures used in the aug-MIA−
QSAR are shown in Figure 1 to illustrate the data variance. Each image
(a combination of pixels) was transformed in numerical values
according to the RGB system of colors using the Chemoface
program18 and then grouped to give a three-way array of 21 × 335
× 218 dimension. This array was unfolded to a matrix of 21 × 73 030
dimension, and then reduced to 21 × 8269 dimension after removing
columns with zero variance. This matrix was regressed against the
phytotoxicity data using partial least-squares (PLS), giving the
calibration model, whose quality was evaluated by analyzing the
root-mean-square error of calibration (RMSEC) and r2, defined as 1 −
[(∑(yi − yî)

2/∑(yi − y)̅2], in which yi corresponds to the
experimental phytotoxicity values (in percent of root length relative

to the control), yî are the predicted values, and y ̅ corresponds to the
mean values. The calibration model was validated using leave-one-out
cross-validation [LOOCV, statistically evaluated using root-mean-
square error of cross-validation (RMSECV) and q2, defined similarly as
above] and a Y-randomization test (mean of 10 repetitions),
statistically evaluated using r2Y‑rand. An additional statistical parameter
proposed by Mitra et al.,19 cr2P (eq 1), was used to give insight about
the statistical difference between r2 and r2Y‑rand (values above 0.5 are
acceptable). Values of r2 ≥ 0.8 and q2 ≥ 0.5 are widely recognized as
acceptable and indicate that predictive models are then achieved.

= − ‐r r r r( )
c

Y
2

P
2 2
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■ RESULTS AND DISCUSSION
Hydrophobicity, expressed in terms of the octanol/water
partition coefficient (log P), has been found to correlate with
biological properties for a long time,20 and for five amino-
phenoxazines, a good correlation was found with phytotoxicity
toward L. rigidum Gaud.8 However, a general extension to the
21 compounds analyzed in this work cannot be performed
using calculated values of log P, because no correlation with the
percent of root length relative to the control was found (Table
2). In addition, there is no relationship between the weed
development with the molecular weight (MW) and volume
(MV) of the 21 titled herbicides nor with all three parameters
(logP, MW, and MV) together using multiple linear regression.
Therefore, the action mechanism of the herbicides is more
complex than those based on solubility and transportation
through cell membranes. A better relationship with molecular
structural changes and, consequently, with specific ligand
interactions at the biomolecular level is therefore expected.
Thus, a structure-based design accounting for molecular shape
and atomic properties was developed using aug-MIA−QSAR to
achieve models for the phytotoxicity estimation of congeners of
benzoxazinones, their degradation products, and analogues.
The aug-MIA descriptors for the 21 compounds of Table 1

were submitted to PLS regression against the phytotoxicity data
toward A. fatua L. and L. rigidum Gaud., and model calibrations
using four PLS components (in which the RMSECV values
were minimized) were achieved (Figure 2), giving acceptable
statistical results (Table 3), especially for the L. rigidum Gaud.
model. The values of r2 above 0.8 do not guarantee that the
QSAR models are reliable for the prediction of biological data;
thus, model validation was performed using LOOCV. It is
worth mentioning that external validation was not performed
because of the limited amount of samples (only 21), and
therefore, the splitting of the data set into training and test
samples would give few compounds, with risk of a lack of
representativeness in the training set. Despite the high residual
for compound 18 in the LOOCV for A. fatua L., outliers were

Table 1. Series of Compounds Analyzed Using Aug-MIA−
QSAR and the Corresponding Phytotoxicities (Percent of
Root Length Relative to the Control) toward A. fatua L. and
L. rigidum Gaud.

compound R1 R2 R3 %A. fatua L. %L. rigidum Gaud.

1 H O-β-D-glucose OH −87 −87
2 H OH OH −87 −92
3 OCH3 OH OH −77 −72
4 H OH H −83 −85
5 OCH3 OH H −87 −80
6 H H H −80 −65
7 OCH3 H H −55 −20
8 H H OH −87 −90
9 OCH3 H OH −32 −28
10 H H OAc −52 −60
11 OCH3 H OAc −65 −60
12 H −28 −48
13 OCH3 −20 −32
14 H H −23 −15
15 OCH3 H −17 −13
16 H OAc −80 −92
17 OCH3 OAc −43 −50
18 OH H −22 −18
19 H 5 −13
20 OCH3 −22 2
21 −80 −83

Figure 1. Superposed structures of the 21 benzoxazinones, their
degradation products, and analogues, used to generate the aug-MIA
descriptors for the QSAR modeling.

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf4024257 | J. Agric. Food Chem. 2013, 61, 8499−85038500



not found using sample leverages and studentized residuals as
outlier diagnostic probes; thus, this compound was considered
important for the model. The high residual for compound 18 in
the LOOCV is probably due to the R1 substituent, which is the
only OH group along with the series in this position. The
LOOCV results (q2 > 0.50) attest to the good prediction

performance of the models, but a Y-randomization test was also
performed to guarantee that calibration results were good as a
result of the actual relationship between descriptors and
variables rather than chance correlation or overfitting.
According to this approach, the phytotoxicity block is
randomized, while the descriptor matrix is kept intact; bad
correlation using PLS is expected if aug-MIA descriptors indeed
encode the corresponding biological data but not the
randomized data. The low mean values of r2Y‑rand compared
to r2 (statistically analyzed using cr2P) indicate that the real
calibration is robust.
Overall, models for the prediction of herbicide potency of

new derivatives of the titled compounds were built, and a 2D
view of chemical structures describes the biological data
accurately. The aug-MIA descriptors can also be used to
generate pattern recognition models using principal component
analysis (PCA), which give insight about chemical properties
responsible for the activity profiles. The phytotoxicity levels

Table 2. Percent of Root Length of Weeds Exposed to Compounds 1−21 Relative to Control and Calculated Molecular
Descriptorsa

A. fatua L. L. rigidum Gaud.

compound % log P MW MV % log P MW MV

1 −87 −1.451 343.3 278.9 −87 −1.451 343.3 278.9
2 −87 0.256 181.1 146.8 −92 0.256 181.1 146.8
3 −77 0.289 211.2 172.4 −72 0.289 211.2 172.4
4 −83 0.328 165.1 138.4 −85 0.328 165.1 138.4
5 −87 0.361 195.2 164.0 −80 0.361 195.2 164.0
6 −80 0.986 149.1 130.4 −65 0.986 149.1 130.4
7 −55 1.019 179.2 155.9 −20 1.019 179.2 155.9
8 −87 0.914 165.1 138.8 −90 0.914 165.1 138.8
9 −32 0.947 195.2 164.3 −28 0.947 195.2 164.3
10 −52 1.278 207.2 175.3 −60 1.278 207.2 175.3
11 −65 1.310 237.2 200.8 −60 1.310 237.2 200.8
12 −28 1.176 135.1 113.6 −48 1.176 135.1 113.6
13 −20 1.209 165.1 139.1 −32 1.209 165.1 139.1
14 −23 2.051 212.2 179.7 −15 2.051 212.2 179.7
15 −17 2.083 242.2 205.2 −13 2.083 242.2 205.2
16 −80 2.471 270.2 225.4 −92 2.471 270.2 225.4
17 −43 2.504 300.3 250.9 −50 2.504 300.3 250.9
18 −22 1.547 228.2 187.7 −18 1.547 228.2 187.7
19 5 0.365 195.2 167.2 −13 0.365 195.2 167.2
20 −22 0.398 225.2 192.8 2 0.398 225.2 192.8
21 −80 1.153 109.1 103.4 −83 1.153 109.1 103.4

alog P, octanol/water partition coefficient; MW, molecular weight; and MV, molecular volume.

Figure 2. Plots of experimental versus fitted and predicted phytotoxicities, expressed in terms of the root length relative to the control, obtained by
the aug-MIA−QSAR models for A. fatua L. and L. rigidum Gaud.

Table 3. Statistical Parameters of the Aug-MIA−QSAR
Models

parameter A. fatua L. L. rigidum Gaud.

PLS components 4 4
r2 0.828 0.858
RMSEC 12.21 11.60
q2 0.504 0.657
RMSECV 21.37 18.15
r2Y‑rand 0.419 0.535
cr2P 0.582 0.526
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were divided in three classes: high (from −70 to −92%),
moderate (from −30 to −69%), and low (from 5 to −29%).
PC1 explained the largest data variance (95.4%), but PC2
(1.6%) was capable of clustering compounds with low activities
(negative scores in PC2) and with moderate/high activities
(positive scores in PC2). Only a few samples of a given class
have fallen within the cluster of a different class (compounds 6
and 7) or have formed a different cluster (compounds 1, 16,
and 17), for both weeds (Figure 3); thus, the PCA models were
generally good to separate classes of compounds with different
phytotoxicity levels toward A. fatua L. and L. rigidum Gaud.
The scores analysis in PCA reveals that malonamic acids and
most aminophenoxazines are not promising, potent herbicides,
while derivatives based on the benzoxazinone and benzox-
azolinone substrutures are potential compounds to be used in
the control of weeds A. fatua L. and L. rigidum Gaud.

■ CONCLUSION

Hydrophobicity, molecular weight, and volume are not enough
to describe completely the phytotoxicity data of benzoxazinone
herbicides and derivatives toward A. fatua L. and L. rigidum
Gaud. Aug-MIA descriptors encoding molecular shape and
different atomic properties are better to explain the bioactivity
behavior of these compounds, indicating that the action
mechanism is not only proportional to cell permeation and
transportation but also to specific ligand−receptor interactions.
Development of new allelochemical derivatives must be driven
by the substructures of benzoxazinones and benzoxazolinones
rather than malonamic acids and aminophenoxazines.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: mrotoly@gmail.com.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Authors are thankful to FAPEMIG and CNPq for the financial
support, studentships (to Mirlaine R. Freitas and Stella V. B. G.
Matias), and fellowships (to Renato L. G. Macedo, Matheus P.
Freitas, and Nelson Venturin).

■ REFERENCES
(1) Watson, L.; Dallwitz, M. J. The Grass Genera of the World; CAB
International: Wallingford, U.K., 1994.
(2) Andrews, T. S.; Morrison, N.; Penner, A. Monitoring the spread
of ACCase inhibitor resistance among wild oat (Avena fatua) patches
using AFLP analysis. Weed Sci. 1998, 46, 196−199.
(3) Bourgeois, L.; Kenkel, C.; Morrison, N. Characterization of cross-
resistance patterns in acetyl-CoA carboxylase inhibitor resistant wild
oat (Avena fatua). Weed Sci. 1997, 45, 750−755.
(4) Colwill, D. F.; Hawkes, R.; Williams, H.; Warner, A. J.; Sutton, B.;
Powles, B.; Preston, C. Resistance to glyphosate in Lolium rigidum.
Pest. Sci. 1999, 55, 489−491.
(5) Gill, G. S. Development of herbicide resistance in annual ryegrass
populations (Lolium rigidum Gaud.) in the cropping belt of Western
Australia. Aust. J. Exp. Agric. 1995, 35, 67−72.
(6) De Prado, R.; De Prado, L.; Menendez, J. Resistance to
substituted urea herbicides in Lolium rigidum biotypes. Pest. Biochem.
Physiol. 1997, 57, 126−136.
(7) Seefeldt, S. S. D.; Hoffman, L. D.; Gealy, R.; Fuerst, P.
Inheritance of diclofop resistance in wild oat (Avena fatua L.) biotypes
from the Willamette Valley of Oregon. Weed Sci. 1998, 46, 170−175.
(8) Macías, F. A.; Marín, D.; Oliveros-Bastidas, A.; Castellano, D.;
Simonet, A. M.; Molinillo, J. M. G. Structure−activity relationship
(SAR) studies of benzoxazinones, their degradation products, and
analogues. Phytotoxicity on problematic weeds Avena fatua L. and
Lolium rigidum Gaud. J. Agric. Food Chem. 2006, 54, 1040−1048.
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